265 research outputs found

    アドホックネットワークにおけるネットワーク生存性評価に関する研究

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    Domain Consistency Regularization for Unsupervised Multi-source Domain Adaptive Classification

    Full text link
    Deep learning-based multi-source unsupervised domain adaptation (MUDA) has been actively studied in recent years. Compared with single-source unsupervised domain adaptation (SUDA), domain shift in MUDA exists not only between the source and target domains but also among multiple source domains. Most existing MUDA algorithms focus on extracting domain-invariant representations among all domains whereas the task-specific decision boundaries among classes are largely neglected. In this paper, we propose an end-to-end trainable network that exploits domain Consistency Regularization for unsupervised Multi-source domain Adaptive classification (CRMA). CRMA aligns not only the distributions of each pair of source and target domains but also that of all domains. For each pair of source and target domains, we employ an intra-domain consistency to regularize a pair of domain-specific classifiers to achieve intra-domain alignment. In addition, we design an inter-domain consistency that targets joint inter-domain alignment among all domains. To address different similarities between multiple source domains and the target domain, we design an authorization strategy that assigns different authorities to domain-specific classifiers adaptively for optimal pseudo label prediction and self-training. Extensive experiments show that CRMA tackles unsupervised domain adaptation effectively under a multi-source setup and achieves superior adaptation consistently across multiple MUDA datasets

    Improved belief propagation decoding algorithm based on decoupling representation of Pauli operators for quantum LDPC codes

    Full text link
    We propose a new method called decoupling representation to represent Pauli operators as vectors over GF(2), based on which we propose partially decoupled belief propagation and fully decoupled belief propagation decoding algorithm for quantum low density parity-check codes. Under the assumption that there is no measurement error, compared with traditional belief propagation algorithm in symplectic representation over GF(2), within the same number of iterations, the decoding accuracy of partially decoupled belief propagation and fully decoupled belief propagation algorithm is significantly improved in pure Y noise channel and depolarizing noise channel, which supports that decoding algorithms of quantum error correcting codes might have better performance in decoupling representation than in symplectic representation. The impressive performance of fully decoupled belief propagation algorithm might promote the realization of quantum error correcting codes in engineering

    Direct observation of vacuum arc evolution with nanosecond resolution

    Get PDF
    Sufficiently high voltage applied between two metal electrodes, even in ultra high vacuum conditions, results in an inevitable discharge that lights up the entire gap, opening a conductive channel through the vacuum and parasitically consuming large amounts of energy. Despite many efforts to understand the processes that lead to this phenomenon, known as vacuum arc, there is still no consensus regarding the role of each electrode in the evolution of such a momentous process as lightning. Employing a high-speed camera, we capture the entire lightning process step-by-step with a nanosecond resolution and find which of the two electrodes holds the main responsibility for igniting the arc. The light that gradually expands from the positively charged electrode (anode), often is assumed to play the main role in the formation of a vacuum arc. However, both the nanosecond-resolution images of vacuum arc evolution and the corresponding theoretical calculations agree that the conductive channel between the electrodes is built in the form of cathodic plasma long before any significant activity develops in the anode. We show evidently that the anode illumination is weaker and plays a minor role in igniting and maintaining the conductive channel.Peer reviewe

    Rethinking the competition between detection and ReID in Multi-Object Tracking

    Full text link
    Due to balanced accuracy and speed, joint learning detection and ReID-based one-shot models have drawn great attention in multi-object tracking(MOT). However, the differences between the above two tasks in the one-shot tracking paradigm are unconsciously overlooked, leading to inferior performance than the two-stage methods. In this paper, we dissect the reasoning process of the aforementioned two tasks. Our analysis reveals that the competition of them inevitably hurts the learning of task-dependent representations, which further impedes the tracking performance. To remedy this issue, we propose a novel cross-correlation network that can effectively impel the separate branches to learn task-dependent representations. Furthermore, we introduce a scale-aware attention network that learns discriminative embeddings to improve the ReID capability. We integrate the delicately designed networks into a one-shot online MOT system, dubbed CSTrack. Without bells and whistles, our model achieves new state-of-the-art performances on MOT16 and MOT17. Our code is released at https://github.com/JudasDie/SOTS
    corecore